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The band structures of In X �X=P, As, and Sb� are calculated using the hybrid HSE06 functional and GW
with spin-orbit coupling effects included up to second order. Conventional local or semilocal density function-
als predict an incorrect band ordering for InAs and InSb when spin-orbit coupling is included. We show that
inclusion of one quarter of the exact exchange allows us to predict very accurate band gaps for InP, InAs, and
InSb, i.e., 1.48, 0.42, and 0.28 eV, respectively, in good agreement with recent experiments. Furthermore,
calculated effective masses for the conduction band �electron� and the valence band �heavy-hole, light-hole,
and split-off band� are in fairly good agreement, whereas the values obtained using semilocal functionals
deviate significantly from experiment even for InP. The calculated Luttinger parameters are also in reasonable
agreement with experiment, although a tendency toward underestimation is observed with increasing anion
mass. This underestimation is shown to be partially related to a tendency to overestimate the band gaps for the
heavier elements using the particular hybrid functional used in this study. By adjusting the screening parameter
in the hybrid functional, agreement with the experimental band gap can be achieved, but even then the
Luttinger parameters are 15% smaller than the experimental values for InAs and InSb.
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I. INTRODUCTION

The III-V zinc-blende semiconductors, In X �X=P, As,
and Sb�, have recently received much attention since they
have potential to be employed as base materials for light-
emitting diodes, infrared detectors, and spintronic devices,
e.g., quantum-dot and quantum-well applications.1–3 The ma-
terials have been the subject of a large variety of experimen-
tal as well as theoretical investigations.4–6 Generally, density
functional theory �DFT� is found to describe reasonably well
the structural properties, such as lattice constants and bulk
moduli. However, for the description of the electronic prop-
erties of In X semiconductors, e.g., band gaps, spin-orbit
splittings, and effective masses, etc., Kohn-Sham DFT yields
unsatisfactory results. For InAs and InSb, the band ordering
at the � point is incorrect, and resultantly effective masses
are crossly wrong.7,8 Two approaches hold the promise to
cure these problems. Hybrid functionals that admix a fixed
fraction of the nonlocal exchange are one simple but fairly
efficient solution;9 the more systematic and rigorous ap-
proach, however, are the quasiparticle Green’s-function-
based methods, such as the GW approximation.10

Describing the band structure of the narrow band-gap
semiconductor, In X, poses many challenges. Since the crys-
tal structure of In X semiconductors, zinc blende, lacks in-
version symmetry, Dresselhaus spin splitting is observed at
the valence band maximum and the conduction band
minimum.11 Spin-orbit coupling �SOC� and the lack of inver-
sion symmetry splits the originally threefold-degenerated oc-
cupied anion p states into one split-off state, a light-hole, and
one heavy-hole band.12 A further complication is that the
electronic properties are strongly influenced by the interac-
tion between the In d semicore electrons, which form shal-
low bands close to the valence band region. For an accurate
evaluation of the band structure the localized semicore In d
states need to be treated as valence states and SOC needs to
be taken into account.

The most thorough theoretical study of In X has been per-
formed by Cardona et al. using the linearized muffin-tin-
orbital �LMTO� method.12 In that study, the muffin-tin po-
tentials were semiempirically adjusted by adding a sharply
peaked potential at the atomic sites in order to fit the experi-
mental band gaps. In this sense that study was not parameter
free. On the other hand, very recent state of the art self-
consistent GW calculations also failed to predict accurate
band gaps and effective masses without adjusting the self-
energy operator.13 Our aim is to determine how well hybrid
functionals perform in describing subtle details of the band
structure. To this end, the projector-augmented-wave �PAW�
method is used to investigate the structural and electronic
properties of In X narrow band-gap semiconductors. Spin-
orbit coupling effects are included self-consistently up to
second order inside the PAW spheres, and hybrid as well as
semilocal functionals are used. The band gaps are also cal-
culated in the GW approximation, starting from hybrid func-
tionals.

II. COMPUTATIONAL DETAILS

The results of this study were obtained using the Vienna
ab initio simulation package �VASP�.14 The PAW method15 as
implemented in the VASP code16 was utilized to describe the
interaction between the ionic cores and the valence orbitals.
The generalized gradient approximation as parametrized by
Perdew, Burke, and Ernzerhof �PBE� �Ref. 17� was em-
ployed to describe the exchange-correlation energy in the
standard DFT calculations. In order to get a better descrip-
tion of the band gaps, hybrid functionals18 as well as the GW
�Refs. 19 and 20� method were used. The use of hybrid func-
tionals is motivated by the observation that the hybrid func-
tional proposed by Heyd, Scuseria, and Ernzerhof �HSE�
�Ref. 9� is performing extremely well for the band gap of
semiconductors.21–24 Remarkably, with the exception of the
lead chalcogenides, effective masses have not yet been pre-
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dicted using hybrid functionals.24 An evaluation of the effec-
tive masses for challenging materials, such as the In X semi-
conductors, might contribute to the acceptance of hybrid
functionals for the modeling of semiconductors.

In standard DFT calculations, both the exchange �Ex� and
the correlation �Ec� energies are treated by a local or semilo-
cal approximation. Due to self-interaction errors and the lack
of an integer discontinuity of the exchange-correlation en-
ergy upon changing the number of electrons, standard Kohn-
Sham DFT band gaps are always too small.25,26 On the other
hand, the Hartree-Fock �HF� method predicts much too large
band gaps, which is attributed to the lack of correlation, and
to the fact that the unoccupied orbitals experience the repul-
sive Hartree potential only. It has been demonstrated by
Muscat et al. that hybrid functionals including one quarter of
the exact exchange can yield very reasonable band gaps for
semiconductors,27 an observation that has since then been
confirmed by many other studies,9,22 including some very
challenging small gap solids such as lead chalcogenides24 or
ternary and quaternary compounds.28

The HSE functional, used in the present work, employs a
screened short-range HF exchange instead of the full exact
HF exchange. This has two main advantages. First, HSE re-
duces the computational demands: since the long-range tail
of the Coulomb kernel is removed, a more rapid convergence
of the exchange interaction with the number of k points is
obtained than for the bare HF exchange.22,29 Second, the
screening is more effective at longer wavelength and result-
antly in materials with a larger lattice constant and a larger
characteristic wavelength at the Fermi level less nonlocal
exchange is included close to the Fermi level. This “automa-
tism” allows an accurate prediction of the band gaps within
one series �for Si-Sn, see Ref. 30�.

For the HSE functional, the exchange-correlation energy
is defined as

Exc
HSE = Ex

DFT��� − 1
4Ex

DFT,SR��� + 1
4Ex

HF,SR��� + Ec
DFT, �1�

where the screening parameter � defines the range separation
and is empirically set to 0.2–0.3 Å−1. Ex

DFT,SR is a density
functional for the short-range part of the exchange energy,
whereas Ex

HF,SR��� is the exact nonlocal exchange evaluated
with a short-range screened Coulomb kernel. In this work, �
was consistently set to �=0.2 Å−1 �HSE06 scheme� for both
the HF and the DFT parts.31 The interaction range of the SR
nonlocal exchange �� /��15 Å� is over several nearest
neighbors and thus considerably more long ranged than in
conventional semilocal functionals. More details about the
implementation of hybrid functionals in the VASP program
can be found in Refs. 18 and 22.

The present calculations use scalar-relativistic PAW po-
tentials, where both the core as well as the valence orbitals
are treated using a scalar relativistic Hamiltonian. The spin-
orbit term was evaluated using the well-known second-order
approximation32

HSOC =
�

4m2c2�
d

��VKS � p� · � , �2�

where VKS is the Kohn-Sham potential and p the momentum
operator. The corresponding terms are only large inside the
PAW spheres and can be rewritten as

HSOC =
�2

4m2c2

1

r

�V0
KS

�r
L� · s� , �3�

where L� is the angular-momentum operator, s� are the Pauli
spin matrices, and V0

KS is the spherical part of the all-electron
Kohn-Sham potential inside the PAW spheres. The one-
center Hamiltonian for the all-electron wave functions is
then given by

HDFT+SOC =
p2

2m
+ VKS + HSOC. �4�

The matrix elements of the Hamiltonian are evaluated using
atomic all-electron orbitals determined for the atoms using a
scalar-relativistic Hamiltonian. In the following, it is noted
that this second-order form for the SOC yields diverging
spin-orbital coupling terms if the orbitals are determined
variationally, but it is generally accepted that the applied
approximation yields results within 5–10% of the experimen-
tal values if it is used in combination with scalar-relativistic
wave functions.

All band-structure calculations were performed at the ex-
perimental equilibrium lattice constants a0 at 300 K,33 i.e.,
5.869, 6.058, and 6.479 Å for InP, InAs, and InSb, respec-
tively, although the effective masses, which we compare to
in this study, have been measured at low temperature
�roughly 4–30 K� by cyclotron resonance and Shubnikov-de
Haas experiments. This approximation for the lattice con-
stants seems to be reasonable since the linear thermal-
expansion coefficients of In X are negligible �smaller than
5�10−6 K−1�. Unfortunately low-temperature lattice con-
stants are not available for In X.

The parameters of the PAW potentials employed in this
work, i.e., the core radii �Rcore� and energy cutoffs �Ecut� as
well as the states treated as valence states are summarized in
Table I. In the present study, the semicore In 4d states were
always treated as valence states and scalar-relativistic
effects32 were included during the pseudopotential genera-
tion. The theoretical lattice constants �a0� and the bulk
moduli �B0� were determined by a fit to Murnaghan’s equa-
tion of state,34 where the energy was calculated at seven
different volumes around the minimum in steps of �a
=0.1 Å. In order to avoid effects from the changes in the
size of the basis set, due to changes in the unit-cell volume,
the energy cutoffs Ecut were increased by roughly 50% with
respect to the energy cutoffs specified in Table I �400, 350,
and 350 eV for InP, InAs, and InSb, respectively�.

TABLE I. Potential parameters of the projector-augmented-
wave method �see text for details�.

Elements
Valence
states

Local
potential

Rcore

�a.u.�
Ecut

�eV�

In 4d105s25p1 4f 2.5 240

P 3s23p3 3d 1.9 270

As 4s24p3 4f 2.1 209

Sb 5s25p3 5f 2.3 173
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The Brillouin-zone �BZ� integrations were carried out on
�-centered k point meshes using the Gaussian smearing
method with a width of 0.05 eV. For the equilibrium lattice
constants and bulk moduli, 6�6�6 k points were used, cor-
responding to a total of 16 irreducible k points in the first
BZ.35 In order to get accurate results for the band structures
including SOC, no symmetry operations were employed, and
the full mesh of k points corresponding to 216 k points was
used.

The band structures E�k� were computed on a discrete k
mesh along high-symmetry directions, i.e., from the BZ cen-
ter � with the coordinates �0,0,0� to the X point �1.0,0.0,0.0�,
L point �0.5,0.5,0.5�, K point �0.75,0.75,0.00�, and W point
�1.0,0.5,0.0� in units of �2� /a ,2� /a ,2� /a�. The effective
carrier masses me

�, mhh
� , mlh

� , and mso
� were evaluated by fitting

the conduction and the valence bands to a parabola according
to m�= �2k2

2meE
, where me denotes the electron rest mass. A k

point spacing smaller than 0.02 Å−1 was found to be re-
quired in order to suppress nonparabolic effects.

III. RESULTS AND DISCUSSION

A. Lattice constants and bulk moduli

The calculated lattice constants and the bulk moduli of
In X are summarized in Table II. For comparison, previously
reported results from other first-principles calculations and
experimental data are included as well. We first emphasize
the virtually perfect agreement between the PAW PBE results
and the full-potential linearized-augmented plane-wave
method �FP-LAPW� PBE results obtained using the WIEN-2K

code.36 This confirms that both methods are capable to obtain
essentially exact results within the considered theoretical
framework.

As usual for heavy elements, the PBE functional overes-
timates the lattice constants and the overestimation increases

with increasing mass from 1.5% for InP, over 2.2% for InAs
to 2.5% for InSb. As a result of the volume error, the bulk
moduli are also significantly smaller than the experimental
ones with errors increasing from 16% to 20%. The HSE06
functional clearly improves upon the PBE functional but still
overestimates the lattice constants by 0.5%, 0.8%, and 1.2%,
and for the bulk moduli the errors are 3% for InP and InAs
and 7% for InSb. This is certainly a result and remainder of
the PBE exchange-correlation functional, which yields large
errors for the equilibrium volume for heavier elements. As
usual SOC, changes the lattice constants very little �0.1%�.
In summary, the HSE06 functional improves the equilibrium
volumes and the bulk moduli for In X, compared to the PBE
functional, but a trend toward too large volumes prevails.

B. Electronic structures of In X

1. Band gaps

The fundamental band gaps and the split-off energies re-
lated to SOC are listed in Table III. In the absence of rela-
tivistic effects and spin splitting, the upper three valence
bands are degenerated at the � point and made up by anion p
states, whereas the electronlike conduction band is domi-
nated by the In s orbital hybridized with the anion s orbital.
The triple-degenerated valence band splits into a single-
degenerated band and one double-degenerated band when
moving away from �. As a matter of fact, there is no spin
splitting and the bands are parabolic around � and symmetric
in �k due to time-reversal symmetry.11,12

In zinc blende, spin-orbit interactions modify the band
topology around the � point significantly. When spin-orbit
interactions are included, the six anion p states �three major-
ity and three minority states� at the top of the valence band
split into the split-off band at lower energies �j= p
−1 /2,�7

	� and four states at higher energy �j= p+1 /2,�8
	�.

TABLE II. The theoretical lattice constants a0 and bulk moduli B0 calculated using different potentials
�PAW and PAW+SOC� and xc functionals �PBE and the hybrid functional HSE06� compared to previously
reported values obtained by the FP-LAPW method �Ref. 36� and experimental data from Refs. 33 and 39.

Methods

InP InAs InSb

a0

�Å�
B0

�GPa�
a0

�Å�
B0

�GPa�
a0

�Å�
B0

�GPa�

This work:

PAW PBE 5.961 58.3 6.195 47.8 6.643 36.3

PAW+SOC PBE 5.959 58.4 6.194 47.9 6.645 36.0

PAW HSE06 5.904 68.4 6.114 56.8 6.561 43.0

PAW+SOC HSE06 5.902 69.0 6.114 56.6 6.564 42.5

Literature:

FP-LAPW PBE �Ref. 36� 5.968 59.9 6.195 48.8

Experiments �300 K�:
Ref. 33 5.8686 71.0 6.0584 58.0 6.4794 45.7

Ref. 39 5.8697 6.0583 6.4794
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As usual, the spin-orbit splitting ��SO� is defined as the en-
ergy difference between the split-off band and the four other
states. In addition, zinc blende lacks inversion symmetry and
after including SOC only parity-time-reversal symmetry pre-
vails. Resultantly, the four remaining states at the top of the
valence band split into two groups with different effective
masses: the light-hole and the heavy-hole. This splitting is
usually termed “Dresselhaus splitting” or the bulk inversion
asymmetry splitting.37

On the PBE level our results clearly illustrate the prob-
lems one is faced with when using local or semilocal func-
tionals. Whereas for InP, PBE predicts a one-electron band
gap, the band order is inverted for InAs and InSb at the �
point, i.e., the six anion p bands are located above the In s
band. Inclusion of SOC worsens the description even further
since heavy- and light-holes are pushed further up in energy.
In the present calculations, the underestimation of the band
gap is slightly less dramatic than for the FP-LAPW LDA
calculations of Massidda et al.7 The difference is mostly re-
lated to the use of a different DFT functional in the present
work. Using the LDA, our band gaps are predicted to be
0.48, −0.42, and −0.37 eV for InP, InAs and InSb, now con-
sistently 0.1 eV greater than the values obtained by Massidda
et al. The remaining discrepancy might be related to insuffi-
cient basis set convergence of the FP-LAPW calculations
�performed in 1990�. The error of the available density func-
tionals is usually attributed to too shallow In d electrons
pushing up the anion p bands �p-d repulsion�. The problem
can be reduced somewhat by placing the d electrons in the
core but even then “negative” band gaps are predicted for
InAs and InSb using the PAW method.

HSE06 repairs the deficiency entirely and restores the cor-
rect band order at the � point. To obtain good agreement

with experiment, SOC has to be included now, in particular
for the heavier anions, since the hybridization between In 5p
and anion p states increases significantly from InP to
InSb,7,38 and because spin-orbit splitting within the anion p
shell also increases with increasing anion mass. The SO
splitting, �SO, is calculated to be 0.114, 0.382, and 0.791 eV
for InP, InAs, and InSb, respectively. These values are in
excellent agreement with the results of angle-resolved pho-
toemission experiments, i.e., 0.108 eV �InP�, 0.39 eV �InAs�,
and 0.81 eV �InSb�.39 The agreement with the fully relativ-
istic LMTO values of Cardona et al. �0.108 and 0.803 eV for
InP and InSb, respectively�12 is also excellent, whereas
Chantis et al. �row LMTO+scQPGW+SOC� �Ref. 13� un-
derestimated the SO splitting somewhat, most likely because
they treated the spin-orbit operator only as a perturbation,
but did not include it in the self-consistency cycle.

After inclusion of SOC, the band gaps of InP and InAs are
practically identical with experiment, whereas that of InSb is
slightly overestimated �0.284 eV compared to 0.24 eV; 20%
error�. In Ref. 40, which adopted the Gaussian-type orbitals
�GTO� method, �row GTO+SOC�, the HSE03 functional
was applied, which uses a larger screening parameter of �
=0.3 Å−1 resulting in a much smaller gap. For most materi-
als, the HSE06 functional ��=0.2 Å−1� performs better than
the older functional. The strong dependence on the screening
parameter �, however, demonstrates that the good agreement
achieved in the present work is certainly to some extent for-
tuitous; nevertheless, HSE06 predicts good band gaps rather
systematically across the periodic table22–24,31 including even
ternary and quaternary compounds.28 The position of the sec-
ond conduction band E0� is also well predicted using HSE06,
although a slight tendency toward too small values is visible.

TABLE III. Energy of the first conduction band E0��6
c −�8

	�, the second conduction band E0���7
c −�8

	�, the valence band spin-orbit splitting
��SO�, and the second conduction band spin-orbit splitting ��SO� � evaluated at the � point. The PBE and the HSE06 results are compared to
previously reported values, obtained using the FP-LAPW, GTO, LMTO, and experimental data from Refs. 33 and 39. Values computed
without taking into account SOC, as well as including SOC are listed. All units are presented in eV.

Methods

InP InAs InSb

E0 �SO E0� �SO� E0 �SO E0� �SO� E0 �SO E0� �SO�

This work:

PAW PBE 0.705 4.092 −0.188 3.898 −0.145 2.950

PAW+SOC PBE 0.677 0.096 3.761 0.448 −0.298 0.341 3.479 0.455 −0.378 0.726 2.432 0.410

PAW HSE06 1.516 4.941 0.544 4.645 0.541 3.526

PAW+SOC HSE06 1.481 0.114 4.607 0.441 0.420 0.382 4.217 0.449 0.284 0.791 2.986 0.411

PAW+G0W0+SOC�HSE06� 1.527 4.817 0.560 4.230 0.463 3.116

PAW+G0W0
TC−TC+SOC�HSE06� 1.322 4.567 0.413 4.028 0.355 2.957

Literature:

FP-LAPW LDA �Ref. 7� 0.42 −0.51 −0.47

GTO+SOC HSE03 �Ref. 40� 1.28 0.08 0.23 0.33 0.05 0.69

LMTO+scQPGW+SOC �Ref. 13� 1.56 0.12 4.88 0.423 0.68 0.36 3.78 0.429 0.54 0.73 3.23 0.389

Experiments:

Ref. 33 �at 300 K� 1.336 0.11 4.70 0.07 0.354 0.37 0.235 0.85 3.14 0.39

Ref. 39 �at 0 K� 1.424 0.108 0.417 0.39 0.235 0.81
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The spin-orbit splitting for the second conduction band also
compares well with the experimental data for InSb. The ex-
perimental value for InP is most likely inaccurate and not
supported by ours or the LMTO+scQPGW calculations.

On top of the HSE06 calculations, the single-shot G0W0
calculations were performed, and the results are also in-
cluded in Table III. SOC was not included in these calcula-
tions and only added a posteriori using the values obtained
for the HSE06 functional. Using a simple single-shot G0W0
calculation, starting from HSE06 wave functions and eigen-
values, too large band gaps were found, a trend that has also
been observed for other materials.41,42 This is related to the
fact that the HSE06 functional predicts too small dielectric
constants if the random-phase approximation is used �as it is
commonly done in the GW approximation�.42 Similar obser-
vations are made in the self-consistent quasiparticle GW
�LMTO+scQPGW� method of Chantis et al., which also
tends to overestimate the band gaps.13 Considering that a
technical accuracy of 0.1 eV is difficult to attain using GW
methods, our results compare well with these scQPGW cal-
culations. The overestimation can be almost entirely re-
moved by including the electrostatic interaction between
electron and holes in the calculation of the screening prop-
erties 
, which enter W=
−1v, where v is the bare Coulomb
kernel. The corresponding results are reported in the row
G0W0

TC-TC. Except for InSb, the results are now in good
agreement with experiment. For InSb, we believe that the
error is related to the neglect of SOC in the calculation of the
dielectric properties: SOC lowers the split-off band and
raises the heavy-hole and light-hole bands, on average con-
serving the center of mass. As long as the SO splitting is
small compared to the band gap, it is reasonable to approxi-
mate the eigenvalues by the center of mass �i.e., neglecting
SOC�. But when the SO splitting approaches the value of the
band gap, the influence of SOC on the screening properties
can no longer be neglected and should be taken into account.
A similar observation was also made for PbTe GW
calculations.24 Unfortunately our GW code currently does
not allow for a consistent inclusion of SOC.

In summary, it is obvious that the GW approach hardly
yields quantitatively more accurate results than the HSE06
functional. Even though the HSE06 functional lacks the fun-

damental justification of the GW method, it is fairly clear
that HSE06 allows for a very accurate description of the
band gaps, without going through all the complications of
sophisticated many-electron calculations �which in the
present case would even require vertex corrections in W�.
Using the HSE06 functional, the calculation of the effective
masses is also much more straightforward, and we will,
therefore, limit the following calculations to the HSE06
functional.

2. Band structure

The band structures of the In X semiconductors were cal-
culated using the HSE06 functional including SOC. In Fig.
1, the In X band structures are shown in an energy range
from −7 to 5 eV and drawn along the important high-
symmetry lines. The results are fairly similar to those of
Cardona et al.12 who used an LMTO approach with muffin-
tin potentials that were empirically adjusted to fit the experi-
mental band gaps. Since SOC was included in the calcula-
tions, the SO splitting is clearly visible in the valence and the
conduction bands. The maximum SO splitting for the va-
lence band and the conduction band was found at L and X,
respectively. One qualitative difference is that the first and
the second conduction bands along �X seem to cross in InP
and InAs, whereas Cardona et al. observed a clear level re-
pulsion resulting in a forbidden crossing.12 Using a purely
local functional �PBE� we find good agreement with Cardona
with a forbidden crossing. In principle, the “crossing” is a
result of an interchange of the order at X compared to the �
point, i.e., at the X point the In px orbital �X6

c� is below the
In s orbital �X7

c�, whereas at � the In s orbital makes up the
conduction band edge ��6

c state�. Nevertheless, since the two
bands belong to the same irreducible representation along
�X��5�,37 the matrix element between the two states is not
necessarily zero and the crossing is in principle forbidden.
The matrix element in the HSE case is negligible resulting—
within the limits of our calculational accuracy—into a cross-
ing. A similar observation is made for InAs.

Due to the absence of inversion symmetry in the zinc-
blende In X semiconductors, the degeneracy between spin up
and spin down is lifted for the electron band, the heavy-hole,
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FIG. 1. �Color online� The band structures of �a� InP, �b� InAs, and �c� InSb along �-X-W-L-�-K obtained from PAW HSE06 calculations
�including SOC�. The electronlike conduction band �elec�, heavy-hole �hh�, light-hole �lh�, and split-off �so� bands are shown. The Fermi
level is indicated by the horizontal doted line.
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the light-hole, and the split-off band at lower symmetry
points even in the absence of a macroscopic magnetic
field.12,37 Furthermore, the heavy-hole states show a linear
dispersion with a maximum slightly off �. The band struc-
ture in the vicinity of the � point is illustrated for InP in Fig.
2 for the HSE06 functional. Experimentally, the hole sub-
band splitting of InSb has been intensively investigated by
Robinson43 and Pidgeon and Groves44,45 through the mea-
surements of the cyclotron resonance of holes. Theoretical
calculations for the subband splitting of the hole and the
electron bands have been presented by Cardona et al.,12

whereas theoretical studies of the splitting within the elec-
tron band have been reported by many researchers.11,13,46,47

The largest subband splitting was observed at the W point
for all In X �see Fig. 1�. Details for the subband splitting
within the electron band and within the three holelike bands
are shown in Fig. 3 along the high-symmetry lines from � to
L ��111� direction� and from � to K ��110� direction�. The
values were obtained by calculating the energy difference
between the �4 and the �3 states, where the splitting will be
designated as positive if the �4 state is above �3. The sub-
band splitting shows a remarkable complex topology, which
is driven by a subtle interplay between hybridization be-

tween conduction and valence bands and SOC. Along �K the
�3 and the �4 bands sometimes even cross �i.e., whenever
the difference crosses zero in Fig. 3�. Our results are remark-
ably similar to those of the fully relativistic calculations of
Cardona et al., both for the absolute magnitude of the spin
splitting, as well as for the positions at which spin-up and
spin-down states cross.12 For InSb, for instance, the maximal
intraband splitting is 165 meV exactly identical to the value
of Cardona et al., the subband splitting for the electron
reaches 135 meV and that for the split-off band is 125 meV,
all values match closely those of Cardona et al. For the
heavy-hole splitting in InSb, we observe, also in agreement
with Cardona et al., a crossing briefly after the � point along
�K.

Using the GW method, Chantis et al. generally observed
somewhat smaller SO splittings.13 This is most likely related
to their non-self-consistent perturbational SOC treatment,
which always slightly underestimates the SO splitting �see
also Table III�. For instance, for the electron in InSb, their
maximal subband splitting is only 120 meV, compared to 135
meV in the present work and in the work of Cardona et al.
Finally, it is noted that our present results also agree well
with the experimental results of Robinson.43 In summary, the
PAW method recovers the fully relativistic results exceed-
ingly well, suggesting that if full self-consistency is
achieved, very accurate results can be obtained in spite of the
second-order SOC treatment used here.

3. Effective charge-carrier masses

In Table IV, the results for the effective electron and hole
masses are summarized for the HSE06 functional for the
directions �X�100�, �K�110�, and �L�111�. For comparison,
the experimental values from Ref. 39 are listed, and further-
more, as an example, the PBE results for InP are included as
well. As already emphasized the masses were evaluated nu-
merically by fitting the calculated dispersion curves around
the � point. Independent fits for all three directions were
performed, although only a small set of effective masses are
linearly independent. For instance, for symmetry reasons the
split-off mass and the electron mass are identical along all
three directions. Within 0.001me this is indeed observed in
our calculations. However, even more linear dependencies
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exist, and it is possible to determine all effective hole masses
from the three Luttinger parameters:39,48

�mhh
�

me
��100�

=
1

�1 − 2�2
,

�mhh
�

me
��110�

=
2

2�1 − �2 − 3�3
,

�mhh
�

me
��111�

=
1

�1 − 2�3
,

�mlh
�

me
��100�

=
1

�1 + 2�2
,

�mlh
�

me
��110�

=
2

2�1 + �2 + 3�3
,

�mlh
�

me
��111�

=
1

�1 + 2�3
. �5�

The Luttinger parameters were obtained by a least-square fit
of the effective carrier masses and are presented in Table V.
The mean absolute errors in the least-square fit were 0.02,
0.04, and 0.15 for InP, InAs, and InSb, respectively, and
recalculating the effective masses from the Luttinger param-
eters gave results within 0.001 of those reported in Table IV.
This shows that the present results are numerically accurate,
although systematic errors introduced by the functional are
another matter.

Comparison with experiment is most straightforward us-
ing the Luttinger parameters. For InP, agreement with experi-
ment is excellent and most likely close to the accuracy of the
experiments, but it is also clear that errors increase with in-
creasing anion mass. For InAs, the Luttinger parameters are
about 18% too small and the error increases to almost 26%
for InSb. As shown above �Eq. �5�� the Luttinger parameters
are essentially inverse proportional to the effective masses
and clearly those effective masses that are small are signifi-
cantly overestimated for InSb �and less so for InAs�. But the

TABLE IV. Effective hole and electron masses at the � point in units of the electron rest mass me

calculated using the HSE06 functional with spin-orbit coupling. For comparison, the PAW PBE results are
given for InP. The experimental values were calculated from the Luttinger parameter tabulated in Ref. 39.

Elements Directions 	msplit-off
� /me	 	mlight-hole

� /me	 	mheavy-hole
� /me	 	melectron

� /me	

PAW+SOC_PBE:

InP �100� 0.142 0.075 0.438 0.055

�111� 0.142 0.068 1.016 0.055

�110� 0.142 0.070 0.779 0.056

PAW+SOC_HSE06:

InP �100� 0.192 0.117 0.414 0.089

�111� 0.193 0.101 0.944 0.089

�110� 0.193 0.104 0.738 0.089

InAs �100� 0.112 0.033 0.343 0.027

�111� 0.111 0.031 0.836 0.027

�110� 0.112 0.032 0.623 0.027

InSb �100� 0.132 0.021 0.244 0.019

�111� 0.132 0.020 0.627 0.019

�110� 0.132 0.020 0.455 0.019

Experiment:

InP �100� 0.210 0.121 0.531 0.080

�111� 0.210 0.108 1.136 0.080

�110� 0.210 0.111 0.885 0.080

InAs �100� 0.140 0.027 0.333 0.026

�111� 0.140 0.037 0.625 0.026

�110� 0.140 0.026 0.513 0.026

InSb �100� 0.110 0.015 0.263 0.014

�111� 0.110 0.015 0.556 0.014

�110� 0.110 0.015 0.435 0.014
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trends are not as systematic in the effective masses.
The small effective masses are a result of the strong level

repulsion between the valence band holes and conduction
band electrons: at the � point, a direct interaction between
the s-like conduction band and the p-like valence band is
forbidden, but slightly off � the interaction is allowed by
symmetry. The interaction energy is inverse proportional to
the square of the band gap, resulting in a very strong level
repulsion between the light-hole and the electron band for
small gap semiconductors. A good prediction of the elec-
tronic masses is easy for large gap materials but becomes
increasingly difficult when the band gap closes since even
tiny errors in the band gap will cause a large error in the
predicted effective masses. InSb is the most critical case
since HSE06 predicts a band gap that is 20% larger than the
experimental one. To access how a change in the band gap
will affect the effective masses, the screening parameter was
changed from �=0.2 to �=0.23 in the HSE functional and
the band gap and the effective masses were re-evaluated.
Using this setting, the band gap is reduced to the experimen-
tal value of 0.239 eV and the Luttinger parameters increase
as shown in Table V. The error is now about 15%, similar to
that for InAs. This clearly indicates that part of the error in
InSb is related to the too large HSE06 band gap but the
larger part of the error still prevails, as for InAs, where the
HSE06 functional predicts the band gap accurately.

It is difficult to determine the reason for the remaining
discrepancy but we remark that Cardona et al. also found too
large effective masses �k 
 �110�� for the light-hole �0.019me�
and the electron �0.016me� for InSb.12 These values
agree almost perfectly with our values for �=0.23: 0.017me
�light-hole� and 0.0165me �electron�. This suggests that �i�
hybrid functionals and local functionals predict very similar
matrix elements and �ii� hence if the band gaps are identical,
identical effective masses are obtained. This observation, a
posteriori, justifies the use of semiempirical muffin-tin po-
tentials fitted to reproduce the experimental band gap. The
discrepancy between experiment and theory for the effective
masses, however, remains unexplained, since the semiempir-
ical LMTO calculations and the HSE06 calculations give

identical effective masses when the parameters are adjusted
to fit the experimental band gaps. A possible reason for the
remaining discrepancy might be errors in the experimental
values or electron-phonon coupling neglected in our and
most theoretical treatments.

IV. CONCLUSIONS

In this paper, the structural and the electronic properties of
narrow-gap In X semiconductors were calculated using the
screened hybrid functional HSE06 and spin-orbit coupling.
Using a conventional gradient corrected density functional,
PBE, the lattice constants are overestimated compared to ex-
periment, resulting in significantly underestimated bulk
moduli. The hybrid functional, HSE06, gives a more bal-
anced description of the lattice parameters and bulk moduli
with a slight overestimation of the lattice constants �1% on
average� and a slight underestimation of the bulk moduli, 3%
in the case of InP and InAs, and 7% for InSb.

For the electronic properties, PBE fails entirely for InAs
and InSb with an incorrect band order at the � point and
much too small band gaps for InP. Resultantly, the effective
masses are only in modest agreement with experiment for
InP. This indicates that a naive scissor correction, causing a
rigid up shift of the conduction band, is not sufficient to
describe subtleties of the band topology. For the band gaps,
the HSE06 functional yields exceptionally good results if
spin-orbit coupling is included. The largest errors are ob-
served for InSb, where the band gap is overestimated by
about 20% �or 40 meV�. The predicted effective masses are
in very good agreement with experiment for InP but are gen-
erally overestimated for InAs and InSb. Concomitantly, the
Luttinger parameters, which are inversely proportional to the
effective masses, are accurate for InP but underestimated by
18% and 26% for InAs and InSb. In InSb, part of the error is
clearly related to the overestimation of the band gap. We
have illustrated this by slightly increasing the screening
length ��� in the HSE06 functional, which in turn decreases
the band gap and the Luttinger parameters. However, a 15%
error in the Luttinger parameters and the effective masses
prevails in InSb and InAs, even if the functional predicts the
correct band gap. For more accurate predictions quasiparticle
methods might be required, but it is also possible that other
effects, such as coupling to zero-point vibrations, might in-
fluence the effective masses. Altogether, the present study
demonstrates that hybrid functionals are a very valuable and
efficient tool to study intricate details of the band topology
and effective masses. They clearly outperform traditional
semilocal density functionals and predict effective masses
within 15% of experiment if the band gap is tuned to fit the
experimentally measured values. We believe that this method
can be valuable for the prediction of effective masses in ma-
terials where experimental dates are not available.

We finally note that the present study a posteriori justifies
the use of empirically adjusted one-electron Kohn-Sham po-
tentials for the prediction of effective masses and other band-
topology-related parameters. Cardona et al. added a sharply
peaked potential at the atomic sites in order to reproduce the
experimental band gaps.12 Their spin-orbit splittings, effec-

TABLE V. Luttinger parameters of In X semiconductors. The
values were determined by a least-square fit to the effective masses
in Table IV. The experimental Luttinger parameters are from Ref.
39.

Elements �1 �2 �3

This work:

InP 5.48 1.54 2.22

InAs 16.5 6.77 7.64

InSb 26.0 10.9 12.2

InSb ��=0.23� 29.7 12.7 14.1

Experiment:

InP 5.08 1.60 2.10

InAs 20.0 8.5 9.2

InSb 34.8 15.5 16.5
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tive masses, and Luttinger parameters are within few percent
of our values derived by an essentially parameter free ap-
proach. Empirical corrections to the Kohn-Sham potentials
are obviously able to predict accurate band topologies with-
out resorting to computationally demanding hybrid function-
als or elaborated many electron techniques such as GW.
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